WRI 2023

Vehicle design - influenced by wheel rail interaction A case study

Kevin McClain

siemens.com/mobility

SIEMENS

Ingenuity for life

Overview

Vehicle design influenced by wheel/rail interaction

- Advantages of vehicle development when as built track data is available.
- Overview of vehicle characteristics dependent on track interaction.
- Case study of 3D track facilitated optimization of a new light weight vehicle.
- Variance in design characteristics; measured trackwork vs standards.
- The presentation will conclude with a dialog of how the availability of measured track data has a positive influence with development of efficient vehicle designs with minimal environmental disturbances.

RAIL TRANSIT SEMINAR · JUNE 6

Vehicle Design – characteristics

Vehicle Characteristics influenced by track interaction

- Vehicle kinematics (motion)
- Vehicle dynamics (forces)
- Structural loads (forces, moments)
- Propulsion (power)

RAIL TRANSIT SEMINAR · JUNE 6

Vehicle Design – kinematics

Vehicle Characteristics, cont...

Vehicle kinematics (motion)

- articulations angles coupler clearances carbody clearances

WRI 2023 SIEMENS

Vehicle Design – kinematics

Vehicle Characteristics, cont...

- Vehicle kinematics (motion)
 - Bogie (yaw, pitch, roll, vertical, lateral, longitudinal displ..)

Vehicle Design – dynamics

Vehicle Characteristics, cont...

- Vehicle dynamics (forces)
 - Wheel / Rail interface studies
 - Geometric wheel / rail CAD investigations
 - Derailment propensity
 - Damping, velocity, conicity by MBS
 - Ride comfort
 - Vertical, lateral, horizontal acceleration by MBS

Vehicle Design – structural

Vehicle Characteristics, cont...

- Structural (forces, moments)
 - Customer technical specification
 - Regulatory
 - APTA, ASME, CPUC, FRA, PRIIA, other..
 - Car builder Internal
 - Static, quasi-static, MBS

OAD CASE	REFERENCE	DESCRIPTION	SOURCE	SOURCE	ASME RT-1	REQUIREMENT	APPENDIX	APPENDIX	NOTES
NUMBER	CASE	DESCRIPTION	SOURCE	SECTION	2009 Item #	(SUMMARY)	(REPORT)	(RESULT FILES)	NOTES
4	N	Vertical operating loads at AW4.	ASME RT-1	Table 1	1	Stress not to exceed 65% of the yield	AKM	RIN	
I IN	IN		2009 (LRV)	Table I	•	strength and no loss of local stability.	A,R,IVI	D,L,N	
		End sill compression.				No permanent deformation of any structural			Enveloped by CP
2	N		ASME RT-1	Table 1	2	member or structural sheathing, with the	^	B	end-load conditio
2	IN		2009 (LRV)	Table I	2	possible exception of the Zone 1 energy	~	D	Included for
				1	1 /	absorption area		1	completeness

RAIL TRANSIT SEMINAR · JUNE 6

SIEMENS

WRI 2023

8

Vehicle Design – Propulsion

Vehicle Characteristics, cont...

- Propulsion (power)
 - Distances, gradients, station stops
 - Brakes (forces, thermal capacities)
 - Drives (efficiencies, forces, power, thermal capacities)
 - Traction inverters (efficiencies, power, thermal capacities)

RAIL TRANSIT SEMINAR · JUNE 6

Overview - new vehicle procurement

- Existing track network
 - Alignment within proximity of historic buildings
 - Ground borne vibrations of concern unsprung mass sensitivity
 - Historic existing track work
 - Vehicle weight of concern light weight construction required
 - Track work located in high gradient landscape
 - Derailment propensity bogie stiffness sensitivity
 - Large moments due to torsion carbody fatigue sensitive

Overview - new vehicle procurement cont...

- Problem statement
 - Competing system integration sensitivities
 - Lightweight vehicle and low unsprung mass complement each other.
 - Fatigue resistance due to large torsional loads can be contradictory

Overview - new vehicle procurement cont...

- The plan
 - Verify technical requirements
 - Examine track drawings compare to standards
 - Measure track compare to drawings and standards
 - Measure existing vehicle dynamics compare to technical specification and standards

Overview - new vehicle procurement cont...

- The plan cont...
 - Define existing trackwork design criteria
 - Use the worse case characteristics
 - Track drawings
 - Measured track
 - Measured existing vehicle dynamic loads

RAIL TRANSIT SEMINAR · JUNE 6

Investigation approach

- Instrument existing cars
 - Rail geometry 3D scanners
 - Rail profile
 - Rail gage width

- Track Curvature GPS, Accelerometers, Inertial Measurement Unit (IMU)
 - Curve Radius
 - Grade
 - Cross Level

RAIL TRANSIT SEMINAR · JUNE 6

Investigation approach cont...

- Instrument existing cars
 - Bogie Movements Displacement Transducers
 - Bogie Yaw, Pitch, Roll relative to the carbody
 - Carbody Movements Displacement Transducers
 - Center Articulation between Carbody Sections
 - Yaw, Pitch, Roll
 - Vehicle Location GPS
 - Vehicle Accelerations Accelerometers

WRI 2023

SIEMENS

15

Investigation approach cont...

- Results
 - Areas of interest plotted on Google Earth maps using GPS data for visualization.
 Warp, gage via Google Earth

Track Parameters

warp 31 ft > 1.75 (below 30mph)

warp 31 ft > 1.50 (above 30mph)

warp 62 ft > 3.00 (FRA class 1)

warp 62 ft > 2.25 (FRA class 2)

narrow gage > 0.25 (mainline)

narrow gage > 0.39 (Vehicle dynamics max new)

narrow gage > 0.41 (Vehicle dynamics max worn)

RAIL TRANSIT SEMINAR · JUNE 6

RAIL TRANSIT SEMINAR · JUNE 6

Investigation approach cont...

- Results
 - Measure track profiles used to create MBS tracks for simulations.

	pitch A-B [°]	roll A-B [°]	yaw A-B [°]	bounce 1 [mm]	bounce 2 [mm]	bounce 3 [mm]	roll 1 [°]	roll 2 [°]	roll 3 [°]	yaw 1-A [°]	yaw 2-A [°]	yaw 2-B [°]	yaw 3-B [°]
1	2.97	0.30	0.44	2.77	-3.89	-0.65	0.16	0.14	0.23	0.14	0.04	0.07	0.72
2			6.41	-4.47	-1.71	-2.65		0.09	0.52	4.76		3.41	
3			0.49	3.61	3.03	-2.80		0.28	0.15	-0.32	-0.12	-0.05	-0.52
4			-0.52	-0.80	-1.68	-0.42	-0.09	0.39		0.34	-0.10	-0.05	0.57
5			0.51	-0.48	-0.55	-0.95	0.25	0.08	0.29	0.22	0.06	0.04	0.47
6			0.43	0.22	-2.31	-1.24	0.12		0.25	0.16	0.07	0.03	0.52
7	2.58	0.41	0.58	-0.30	-2.29	0.51	0.27	0.62	0.12	0.12	0.03	0.05	0.53
8	2.58	0.25	-0.58	-2.97	-2.42	0.32		0.46	0.18	0.03	-0.11	-0.04	0.55
9	2.54	0.51	7.44	2.78	-2.10	-4.55		0.06	0.43	3.63	4.17		3.70
0	2.52	0.50	0.36	1.73	-4.17	-1.91		0.28	0.26	0.44	0.04	0.02	0.42
1	2.48		0.59	-0.06	-2.88	-0.64	0.38	0.59	0.13	0.43	-0.20	0.14	0.62
2	2.46		0.52	-0.08	-1.29	-0.27	0.09	0.16	0.04	0.10	-0.17	0.04	0.46
3	2.44	0.35	0.40	-1.62	-3.46	-0.47	0.19	0.21	0.09	0.19	0.05	0.02	0.45
4	2.32	0.74	21.66	1.20		-1.96	0.61	0.62	0.43	5.00	10.99	11.69	13.45
5	2.25	0.22	21.79	2.83	-0.06	-3.85	0.54	0.50	0.43	15.01		5.64	4.45
6	2.25	0.11	6.99	2.32	-0.77	-0.63	0.34	0.12	0.04	3.45	3.85		3.66
7	2.22		0.55	-0.85	-2.73	-0.20	0.11	0.31	0.20	0.19	0.16	0.02	0.42
8	2.21	0.37	0.34	2.94	-1.06	-0.37	0.15	0.12	0.12	0.23	-0.04	-0.03	0.57
9	2.19	0.40	0.10	-1.16	-0.07	-1.50	0.66	0.26	0.30	0.51	0.18	0.31	0.84
0	2.18	0.18	0.33	1.83	-2.70	-0.95	0.45	0.43	0.14	0.19	0.16	0.26	0.78
1	2.16	0.39	0.41	-0.10	-1.24	1.12	-0.06	-0.14	0.07	0.12	0.11	0.05	0.44
2	2.16	0.15	1.41	-0.26	-2.53	0.69	0.07	-0.08	0.04	1.01	0.49	1.12	0.32
3	2.13	0.31	6.10	0.29	-0.03	-0.88	0.25	0.09	0.20	1.84	3.43	2.84	3.76
4	2.10	0.25	0.41	-0.41	-2.32	-1.37	0.16	0.23	-0.08	0.18	0.13	-0.04	0.51
5	2.08	0.26	0.36	-1.58	-3.45	-1.75	0.16	0.24	-0.16	-0.27	-0.15	-0.03	0.62
6	2.04	0.33	0.37	-0.33	-1.09	-2.06	0.24	0.28	0.34	0.16	-0.08	-0.02	0.30
7	1.99	0.02	0.23	-0.40	0.01	-2.34	0.27	0.37	0.59	0.26	0.07	0.57	2.49
8	1.95	-0.05	-0.24	-0.19	1.49	-0.69		0.42	0.53	0.07	-0.02	-0.12	0.68
9	1.95	0.24	-0.32	-1.82	-0.41	-1.78	-0.07	0.19	0.11	0.18	-0.03	-0.01	0.47
0	1.94	0.31	0.40	-0.01	0.79	1.19	0.26	0.17	0.10	0.19	0.14	0.03	0.44
1	1.92	0.33	0.52	-0.43	-1.81	-0.91	0.11	0.34	0.07	0.16	0.25	-0.07	0.32
2	1.91	-0.17	-0.34	1.09	-0.78	-0.88	0.10	-0.08	0.14	-0.30	-0.08	0.01	0.62
3	1.90	0.12	0.37	-0.66	0.32	-1.13	0.26		0.35	0.22	-0.07	-0.61	0.42

RAIL TRANSIT SEMINAR · JUNE 6

Investigation approach cont...

Results

Vehicle kinematics (motion) – combinations based on measurements

CASE NO	ENV COLOR	ROLL (± DEG)	PITCH (± DEG)	YAW (± DEG)	LON (± MM)	LAT (± MM)	VERT (SECONDARY, + MM)	VERT (PRIMARY, + MM)	COMMON SPACE FILE NAME
1PT		0	2.2	17	5	30	45	30	A6MSF4SIM00PWR_TRK_ENV_1PT
2РТ		0.66	2.97	15.01	5	30	31.61	30	A6MSF4SIM00PWR_TRK_ENV_2PT
ЗРТ		1.31	1.41	15.06	5	30	31.54	30	A6MSF4SIM00PWR_TRK_ENV_3PT
4PT		1.28	1.98	16.29	5	30	31.05	30	A6MSF4SIM00PWR_TRK_ENV_4PT
5PT		0.92	1.33	4.1	5	30	44.53	30	A6MSF4SIM00PWR_TRK_ENV_5PT
6PT		0	4.1	0	0	0	0	0	A6MSF4SIM00PWR_TRK_ENV_6PT
7 PT		0.66	2.97	15.01	5	30	31.61	30	A6MSF4SIM00 PWR_TRK_ENV_7PT (CASE 2PT WITH BEAM REMOVED)
8PT		1.28	1.98	16.29	5	30	31.05	30	A6MSF4SIM00PWR_TRK_ENV_8PT (CASE 4PT WITH BEAM REMOVED)

NOTE: A-CAR DEFLECTION WITH RESPECT TO B-CAR NOT CONSIDERED (0° PITCH, 0° ROLL).

SIEMENS WRI 2023

RAIL TRANSIT SEMINAR · JUNE 6

Investigation approach cont...

- Results
 - Vehicle dynamics (forces) simulated via MBS

Investigation approach cont...

- Results
 - Structural loads (forces, moments) simulated by MBS
 - Measured track simulated via MBS
 - Track drawing simulated via MBS
 - VDV 152 simulated via MBS Carbody Operational Loads Simpach

Investigation approach concluded

- Results summary
 - Measured track simulations resulted in optimized characteristics
 - Vehicle kinematics (motion) track warp combinations
 - Vehicle dynamics (forces) gage, warp, curvature combinations
 - Structural loads (forces, moments) warp, curvature combinations
 - Propulsion (power) gradients

Investigation approach concluded

Results - summary

Optimized characteristic determination

	Tech Spec	Standard	Measured	Combined
Kinematics			\checkmark	
Dynamics			\checkmark	
Structural				\checkmark
Propulsion			\checkmark	

RAIL TRANSIT SEMINAR · JUNE 6

Discussion

Infrastructure - vehicle system integration

- Optimization
 - System integration is a partnership between operator and car builder
 - All parties invested to ensure vehicles perform as intended;
 - Track drawings and standards are not enough information to ensure vehicles will perform as required;
 - Curvature, gage, gradients, warp combinations in as built condition are a necessity.

Contact

Published by Siemens Mobility

Kevin McClain

Director of Mechanical System Engineering Siemens Mobility / US / Engineering 7464 French Road Sacramento, CA United States Mobile +1.916.705.4345

E-mail kevin.mcclain@siemens.com

